

The OSRE-Documentation

Contents:

	Introduction
	My idea

	Build
	Installation Prerequisites

	Build for Windows

	Build for Linux

	Write your first Hello-World-App
	Prepare a workspace

	Walkthrough

	The Platform Abstraction Layer

	The Event-System
	Introduction

	Using Event-Handler

	Engine-Messaging

	The Render System
	Multithreaded rendering - The idea

	The Render-Graph

	Render-Backend-Service

	Supported Render-API’s

	The Scene
	The hierarchical Representation

	Nodes and more

	Culling and Picking

Indices and tables

	Index

	Module Index

	Search Page

Introduction

My idea

Since 1986 I am interested in computer graphics. I started with simple stuff on C16 and lateron on an Anmiga, went to PC’s and wrote my first
3D-Program based on the Painter’s-Algorithm in 1996 (see https://github.com/kimkulling/osre_doc/edit/main/source/Introduction.rst).

In 2003 I help the ZFX-Team with the ZFX-Community-Engine (more info’s are here, only german: https://de-academic.com/dic.nsf/dewiki/1547500).

Everytime when I had worked on the engine-stuff I realized that I do not have any plan how to do all the interesting stuff. I missed the
deeper knowledge which is most importand for writing 3D-Software, which can b used by other people. So I decided to restart from scratch and
started to work on the OSRE: Just another Open-Source-Render-Engine. This is just a side-project for me. I am trying to implement things like

	Writing my own multithreaded renderer

	How shall a multi-platform layer looks like

	Learn OpenGL and Vulkan

	Implement an asset-loader for assimp-based models

	Doing lightning right

	Implement a simple bitmap-font renderer

	Render UI-elements right

and many more. And here is my place to play around with these things.

Build

Installation Prerequisites

	At first you have to install the following packages:
	
	git

	CMake Version 3.10 or higher

	For Windows: Visual-Studio 2017 or 2019

	For Linux: gcc or clang

Build for Windows

	Open a command-prompt

	Checkout the code via:

> git clone https://github.com/kimkulling/osre.git

	Navigate into your folder which contains the OSRE-Repository

	We are using a cmake-based build to generate the build files. to generate your project-files for your Build Environment via:

> cmake CMakeLists.txt

	If you want to use a different environment like eclipe or CLion you can generate them as well:
> cmake CMakeLists.txt -G <Your IDE>

	You can get the list of generators via:
> cmake –help

	If you have select the VS-Generator open the solution osre.sln with Visual-Studio or build OSRE via:

> cmake --build .

	You will find the samples and tests at:

> osre\bin\Debug

	To run the samples you have to copy the dlls from SDL2 and assimp into your bin-folder:

> cd osre\bin\debug
> copy ..\..\contrib\assimp\bin\debug*dll .
> copy <SDL2-Folder>\libs\x64*dll .

	This is an open issue which will get fixed as soon as possible.

Build for Linux

	Open a terminal

	Checkout the code via:

> git clone https://github.com/kimkulling/osre.git

	Go into the folder of osre

	Open the solution osre.sln with the VS or build OSRE via:

> cmake --build .

	You will find the samples and tests at:

> ose/bin

Write your first Hello-World-App

Prepare a workspace

To get started you need to create a folder for your app andd add a CMakeLists.txt file into it:

INCLUDE_DIRECTORIES(
 ${PROJECT_SOURCE_DIR}
 ../
)

 SET (00_helloworld_src
 00_HelloWorld/HelloWorld.cpp
 00_HelloWorld/README.md
)

 ADD_EXECUTABLE(HelloWorld
 ${00_helloworld_src}
)

 link_directories(
 ${CMAKE_CURRENT_SOURCE_DIR}/../../ThirdParty/glew/Debug
 ${CMAKE_CURRENT_SOURCE_DIR}/../../ThirdParty/glew/Release
)

 target_link_libraries (HelloWorld osre)

Your first Hello-World-Application

Here the code:

#include <osre/App/App.h>
#include <osre/Common/Logger.h>
#include <osre/RenderBackend/RenderBackendService.h>
#include <osre/Scene/MeshBuilder.h>
#include <osre/Scene/Camera.h>

using namespace ::OSRE;
using namespace ::OSRE::App;
using namespace ::OSRE::RenderBackend;

// To identify local log entries we will define this tag.
static const c8 *Tag = "HelloWorldApp";

///
/// The example application, will create the render environment and render a simple triangle onto it
///
class HelloWorldApp : public AppBase {
 /// The transform block, contains the model-, view- and projection-matrix
 TransformMatrixBlock m_transformMatrix;
 /// The entity to render
 Entity *mEntity;
 /// The keyboard controller to rotate the triangle
 Scene::AnimationControllerBase *mKeyboardTransCtrl;

public:
 /// The class constructor with the incoming arguments from the command line.
 HelloWorldApp(int argc, char *argv[]) :
 AppBase(argc, (const char **)argv),
 m_transformMatrix(),
 mEntity(nullptr),
 mKeyboardTransCtrl(nullptr) {
 // empty
 }

 /// The class destructor.
 ~HelloWorldApp() override {
 // empty
 }

protected:
 bool onCreate() override {
 if (!AppBase::onCreate()) {
 osre_error(Tag, "Error while creating application basics.");
 return false;
 }

 AppBase::setWindowsTitle("Hello-World sample! Rotate with keyboard: w, a, s, d, scroll with q, e");
 World *world = getActiveWorld();
 mEntity = new Entity("entity", *AppBase::getIdContainer(), world);
 Scene::Camera *camera = world->addCamera("camera_1");
 ui32 w, h;
 AppBase::getResolution(w, h);
 camera->setProjectionParameters(60.f, (f32)w, (f32)h, 0.001f, 1000.f);

 Scene::MeshBuilder meshBuilder;
 RenderBackend::Mesh *mesh = meshBuilder.allocTriangles(VertexType::ColorVertex, BufferAccessType::ReadOnly).getMesh();
 if (nullptr != mesh) {
 mEntity->addStaticMesh(mesh);
 world->addEntity(mEntity);
 camera->observeBoundingBox(mEntity->getAABB());
 }
 mKeyboardTransCtrl = AppBase::getTransformController(DefaultControllerType::KeyboardCtrl, m_transformMatrix);

 return true;
 }

 void onUpdate() override {
 RenderBackendService *rbSrv = getRenderBackendService();
 mKeyboardTransCtrl->update(rbSrv);

 rbSrv->beginPass(PipelinePass::getPassNameById(RenderPassId));
 rbSrv->beginRenderBatch("b1");

 rbSrv->setMatrix(MatrixType::Model, m_transformMatrix.m_model);

 rbSrv->endRenderBatch();
 rbSrv->endPass();

 AppBase::onUpdate();
 }
};

/// Helper function to generate the main function.
OSRE_MAIN(HelloWorldApp)

Walkthrough

Now let’s take a deeper look what is going on in the code. We need to include some basic stuff for our first render-experiment.

Lets start with the headers:

#include <osre/App/App.h>
#include <osre/Common/Logger.h>
#include <osre/RenderBackend/RenderBackendService.h>
#include <osre/Scene/MeshBuilder.h>
#include <osre/Scene/Camera.h>

To initialize the OSRE-rendersystem you can use the AppBase class. By including App/App.h the class and all dependencies will be included.

To make your application more verbose we want to log some messages. This is the reason to use the Common/Logger.h header.

We want to render a single triangle. The RenderBackend/RenderBackendService.h will provide the API to add triangles. Scene/MeshBuilder.h offers
you a simple way to create triangle. So we need this include as well.

And we want to look onto the scene. Scene/Camera.h provides an inferface for that.

Define your own application class

class HelloWorldApp : public AppBase {
 /// The transform block, contains the model-, view- and projection-matrix
 TransformMatrixBlock m_transformMatrix;
 /// The entity to render
 Entity *mEntity;
 /// The keyboard controller to rotate the triangle
 Scene::AnimationControllerBase *mKeyboardTransCtrl;

public:
 /// The class constructor with the incoming arguments from the command line.
 HelloWorldApp(int argc, char *argv[]) :
 AppBase(argc, (const char **)argv),
 m_transformMatrix(),
 mEntity(nullptr),
 mKeyboardTransCtrl(nullptr) {
 // empty
 }

 /// The class destructor.
 ~HelloWorldApp() override {
 // empty
 }
...

We want to create a triangle. And we want to rotate this with our keyboard. So we need an attribute from the type TransformMatrixBlock . This class
provides a simple API to create a matrix with translation, scaling and rotating.

To manage the triangle in our scene we need an attribute from type Entity.

And last but not least we need an attribute to accss the keyboard input and control the animation of our triangle from the type Scene::AnimationControllerBase.

The Platform Abstraction Layer

The Event-System

Introduction

Using Event-Handler

Engine-Messaging

The Render System

Multithreaded rendering - The idea

In classic engines the rendering and the game logic will be done in the same thread: the main thread. So all the logic
must share the time to get their tasks done like:

	Input handling

	User interaction

	Scene-updates

	And, last but to least, the rendering itself

So when you want to get a frame rate from 60 you have to work in a timeframe from 1/60 -> 1.67ms. Not too much.
To encouble this a little bit I the OSRE-Rendering will be done in a separate render-thread. Each update will be done
one frame before.
This helps to get the render logic encapsulated from the rest and get more resources for a smooth render experience.
Of course new render-API’s will be able to instrument multible threads for the rendering. To implement this logic
a separate render-thread is an advantage as well. There is only one place where you have to look at.
All the rendering will be managed in a separate task. The main-thread can communicate with the back-end aka the render-thread
about the Render-system.

The Render-Graph

The rendering is managed by a render-graph:
- In each frame all the passes were iterated
- For each pass all the render-batches will be iterated

	A batch iteration will set the uniform parameter

	A batch iteration will set the material

	A batch iteration will do all render calls.

It look like:

[image: _images/OSRERenderGraph.svg]

Render-Backend-Service

We have a class called the RenderBackend-Service which is the fascade for the user to the render-backend. If you want to create a render
window or you want to add a new mesh to the scene you have to do this via the RenderBackend-class:

class RenderBackendService {
public:
 RenderBackendService();
 virtual ~RenderBackendService();
 void setSettings(const Properties::Settings *config, bool moveOwnership);
 const Properties::Settings *getSettings() const;
 void sendEvent(const Common::Event *ev, const Common::EventData *eventData);
 PassData *getPassById(const c8 *id) const;
 PassData *beginPass(const c8 *id);
 RenderBatchData *beginRenderBatch(const c8 *id);
 void setMatrix(...);
 void setUniform(UniformVar *var);
 void setMatrixArray(const String &name, ui32 numMat, const glm::mat4 *matrixArray);
 void addMesh(Mesh *geo, ui32 numInstances);
 void addMesh(const CPPCore::TArray<Mesh *> &geoArray, ui32 numInstances);
 void updateMesh(Mesh *mesh);
 bool endRenderBatch();
 bool endPass();
 void clearPasses();
 void attachView();
 void resize(ui32 x, ui32 y, ui32 w, ui32 h);
 void syncRenderThread();
};

To work with this you have to configure it and open the access to it:

auto *rbService = new RenderBackendService();
rbService->setSettings(mySettings, false);
if (!m_rbService->open()) {
 // Error handling
}

Supported Render-API’s

At this moment the following render-backends are implemented:

	OpenGL

	Vulkan (in progress)

The Scene

The hierarchical Representation

If you want to build a virtal model of the world you can use trees. If you want to create a table with a glass staing on it you can model this like:
- The floor where is the table stands on is the root-node
- On the floor there is the table. So the table is a child of the floow-
- On the table there is the glass standing on it. So the glass can be modelled as the child of the table.

The advantage of this kinde of modelleing gets clearer ifd you want to shake the floor by an earthquake.
For a planned animation you need to know which objects get affected by the earchquake. And here the hierachical tree
from your scnene gan hekp you: you just need to traverse all children from the floor.

Nodes and more

So how can we describe the scene by using a tree. OSRE is using nodes. Each node can have one single parent node and a couple of children nodes:

```
class Node {


Node mParent;
::CPPCore::TArray<Node*> mChildren;





};




Culling and Picking





            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          The OSRE-Documentation
        


        		
          Introduction
          
            		
              My idea
            


          


        


        		
          Build
          
            		
              Installation Prerequisites
            


            		
              Build for Windows
            


            		
              Build for Linux
            


          


        


        		
          Write your first Hello-World-App
          
            		
              Prepare a workspace
              
                		
                  Your first Hello-World-Application
                


              


            


            		
              Walkthrough
              
                		
                  Lets start with the headers:
                


                		
                  Define your own application class
                


              


            


          


        


        		
          The Platform Abstraction Layer
        


        		
          The Event-System
          
            		
              Introduction
            


            		
              Using Event-Handler
            


            		
              Engine-Messaging
            


          


        


        		
          The Render System
          
            		
              Multithreaded rendering - The idea
            


            		
              The Render-Graph
            


            		
              Render-Backend-Service
            


            		
              Supported Render-API’s
            


          


        


        		
          The Scene
          
            		
              The hierarchical Representation
            


            		
              Nodes and more
              
                		
                  };
                


              


            


            		
              Culling and Picking
            


          


        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





